Фотолитография, печатная графика, способ печати
Фотолитогра́фия — метод получения определённого рисунка на поверхности материала, широко используемый в микроэлектронике и других видах микротехнологий, а также в производстве печатных плат. Один из основных приёмов планарной технологии, используемой в производстве полупроводниковых приборов.
Суть процесса фотолитографии сводится к тому, что вначале на обрабатываемую поверхность наносится тонкая фоточувствительная полимерная плёнка (фоторезист). Затем эта плёнка засвечивается через фотошаблон с заданным рисунком. Далее проэкспонированные участки удаляются в проявителе. Получившийся на фоторезисте рисунок используется для таких технологических этапов планарной технологии, как травление, электроосаждение, вакуумное напыление и другие. После проведения одного из этих процессов оставшийся, не удалённый при проявлении, фоторезист также удаляется.
Принципиальное отличие фотолитографии от других видов литографии заключается в том, что экспонирование производится светом (видимым или ультрафиолетовым), тогда как в других видах литографии для этого используется рентгеновское излучение (рентгеновская литография), поток электронов (электронно-лучевая литография) или ионов (ионно-лучевая литография) и другое.
Наименьшие размеры деталей рисунка, достижимые в фотолитографии (разрешение), определяются: длиной волны используемого излучения, качеством применяемой при экспонировании оптики, свойствами фоторезиста и достигают 100 нм. Применение специальных методов (иммерсионная литография) теоретически позволяет получить разрешение до 11 нм
Процесс фотолитографии
Очистка и подготовка поверхности
Первоначально подложка (при производстве монолитных микросхем это обычно пластина из монокристаллического кремния) очищается от загрязнений в ультразвуковой ванне в различных органических растворителях: ацетоне и метаноле и полосканием в изопропаноле. В случае значительных загрязнений поверхности, её обрабатывают смесью серной кислоты и пероксида водорода (H2SO4 + H2O2) с последующим применением процесса RCA очистки. Различные материалы подложки имеют различное сцепление (адгезию) фоторезиста с ней. Например, такие металлы, как алюминий, хром и титан имеют высокую адгезию, в то время как благородные металлы — золото, серебро или платина — имеют очень плохую адгезию. В случае низкой адгезии перед нанесением фоторезиста рекомендуется наносить тонкий подслой адгезива, увеличивающий сцепление фоторезиста с поверхностью, например, гексаметилдисилазан (ГМДС). Кроме этого, иногда и поверх фоторезиста наносят антиотражающие покрытия.Нанесение фоторезиста
Установки центрифугирования для нанесения фоторезиста Наиболее широко распространённый метод нанесения фоторезистов на поверхность — это центрифугирование. Этот метод позволяет создавать однородную плёнку фоторезиста и контролировать её толщину скоростью вращения пластины (порядка нескольких тысяч оборотов в минуту). Как правило, используется при работе с большими круглыми пластинами. При использовании не подходящих для центрифугирования поверхностей, например для покрытия небольших поверхностей, используется нанесение погружением в фоторезист. Недостатками этого метода являются большой расход фоторезиста и неоднородность получаемых плёнок. При необходимости нанести резист на сложные поверхности используется аэрозольное распыление, однако толщина плёнки при таком методе нанесения также не является однородной.Предварительное задубливание
После нанесения резиста необходимо провести его предварительную сушку (задубливание). Для этого образец выдерживается несколько минут в печи, при температуре 100—120оС. Этот этап необходим для испарения растворителя, содержащегося в фоторезисте, что способствует улучшению адгезии, исключению прилипания к фотошаблону, возможности нанесения второго слоя фоторезиста и имеет положительное влияние в некоторых других аспектах.Экспонирование
Процесс экспонирования заключается в засветке фоторезиста через фотошаблон, содержащий желаемый рисунок, светом видимого или ультрафиолетового диапазона, что и отличает процесс фотолитографии от других видов литографии. К примеру, в случае рентгеновской, ионно-лучевой и электронной литографии, для экспонирования используются рентгеновские лучи, ионы и электроны соответственно. Наиболее стандартными длинами волны экспонирования в фотолитографии являются i-линия (365 нм), h-линия (405 нм) и g-линия (436 нм). Как бы то ни было, большинство фоторезистов могут быть проэкспонированы и широким спектром в ультрафиолетовом диапазоне (интегральное экспонирование), для чего обычно применяется ртутная лампа. В случае фотолитографии в глубоком (жёстком) ультрафиолете используются длины волн около 13,5 нм и специальные фоторезисты. Среди источников излучения, использующихся в фотолитографии, наиболее распространены:- Ртутная лампа (около 400 нм)
- Эксимерный лазер KrF (248 нм)
- Эксимерный лазер ArF (193 нм)
- Эксимерный лазер F2 (157 нм; только экспериментальные установки)